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J.  Phys. A: Math. Gen. 16 (1983) 3507-3528. Printed in Great Britain 

The cosmological problem as initial value problem on the 
observer’s past light cone: geometry 

G Dautcourt 
Zentralinstitut fur Astrophysik der Akademie der Wissenschaften der D D R ,  1502 
Potsdam-Babelsberg, R-Luxemburg Strasse 17a, German Democratic Republic 

Received 21 January 1983 

Abstract. In the context of general relativity an approach to cosmology is suggested which 
claims to rest exclusively on quantities accessible (at least in principle) to the astronomical 
observer. No cosmological principle will be adopted as an a priori assumption. Conclusions 
leading to a certain cosmological model, or to a class of such models, will be based on 
data which, in principle, are observable. 

The approach is based on the characteristic initial value problem for the Einstein field 
equations imposed on the observer’s past light cone. The inner geometry of the past light 
cone enters the relations between observable quantities. Thus, it should become possible 
to determine both the cone geometry, as well as the distribution of cosmic matter near 
the cone, without adopting arbitrary assumptions. 

The propagation equations determine the gravitational field and the matter distribution 
at finite distances from the past cone. In this way, cosmological principles like the 
Copernican principle or homogeneity requirements may become, to some degree, access- 
ible to observational tests, provided general relativity is adopted as the correct theory of 
gravity. 

These assertions refer to the inner domain of the past light cone, that is, to the 
relativistic past of the observer. Fields or matter outside the past cone are not determined 
without additional assumptions. Thus one achieves some separation between observa- 
tionally founded statements and arbitrary assumptions in relativistic cosmology, 

In the present article the first steps of the programme are carried out. The cone initial 
data are specified for a general dust model. 

An explicit procedure in terms of successive integrations is given to determine the 
gravitational field near the past light cone. 

1. Introduction 

Facing the diversity of known cosmological models within Einstein’s general theory 
of relativity, it is still an open question which of them corresponds to reality. Are 
observations able to decide this question uniquely, or is our adoption of a small class 
of models, such as the Friedman models, merely a reflection of our own symmetry 
requirements for the universe? More precisely, which part of the large-scale structure 
of the universe can be determined using observational data (and the powerful 
machinery of general relativity) alone, adopting no cosmological principle whatsoever? 

This question and the way to a practicable answer within the framework of general 
relativity is discussed in this and further articles. In general terms the answer follows 
from the principles of relativistic causality. 

@ 1983 The Institute of Physics 3507 
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Most cosmological experience is taken from data on the past light cone of the 
observer, From an observational or kinematical point of view the past light cone is 
the primary object in cosmology. Thus, for instance, the usual cosmological tests are 
tests of the structure of the nearby light cone and of the matter distribution near the 
cone rather than tests of global world models. However, also from the dynamical 
point of view, the light cone is a basic object. This relies on the fact that classical 
fields are described by systems of hyperbolic differential equations, for which the 
initial value problem on a characteristic hypersurface such as a cone is a well posed 
problem. It had already been suggested by Heckmann and Schucking at the 1958 
Solvay congress in Brussels that the cosmological problem should be considered as a 
characteristic initial-value problem on the past light cone of the present observer. 
The peculiar property of this type of initial value problem is that with data given on 
the past cone, the field inside the cone can be determined, while the data do not fix 
the field outside the cone. One may turn this into the statement that one cannot 
predict the future in cosmology. For example, incoming gravitational waves of 
unknown intensity crossing the observer’s world line in the future cannot be excluded. 

Obviously, relativistic causality confines a strictly observationally based cosmology 
to the interior of the present light conet. The interior need not enclose all world 
lines of matter, if particle horizons exist. Any statement concerned with world points 
outside the observable region involves assumptions which cannot be confirmed by 
observations made by a present time observer. The characteristic initial value problem 
seems to be the proper tool to separate conclusions derived from observational data 
alone from those involving hypotheses such as a universal, or even only a local, validity 
of the cosmological principle. In particular, the question of existence of a past 
singularity may be answered in terms of past cone data alone, without reference to 
the hypothetical existence of a global Cauchy surface with prescribed properties 
(Hawking and Ellis 1968). 

Clearly, not all cosmologically important information is confined to the past cone. 
Incoming cosmic ray particles with non-zero rest mass are important, the high-energy 
tail of cosmic ray particles may be of considerable cosmological significance as well 
as geological data, the ‘traces’ of events along and around the observer’s past world 
line. In particular, the age of the stars in the oldest globular and galactic clusters 
gives some important limits to cosmological parameters. 

Even more important is the primordial synthesis of light elements. This process 
offers the possibility to restrict both the space-time geometry and the state of matter 
in the neighbourhood of a past section of the observer’s world line, deep inside his 
past light cone. From the point of view of the cone initial-value problem, data of this 
type should be redundant because one should be able to predict them from initial 
data on the past cone. In practice, however, they are extremely valuable, since 
cosmological observations are too few in number and too closely connected with the 
intrinsic evolution of cosmic objects to determine all initial data with the required 
accuracy. 

The characteristic initial-value problem was investigated several years ago for 
gravitational and electromagnetic, as well as spinor, fields in connection with the 
theory of gravitational radiation (see e.g. Sachs 1962, Penrose 1963, Dautcourt 1963). 

+ It is for this reason that we use the more precise term ‘metagalaxy’ instead of ‘universe’, if we refer to 
directly observable (or more precisely, presently observable) properties of matter and space-time on a 
large scale. 
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In the case of non-analytic fields the problem was treated by Muller zum Hagen and 
Seifert (1977), based on methods devloped in connection with the Cauchy problem 
by Choquet-Bruhat (1962, 1971) and Choquet-Bruhat and Geroch (1969) and others. 
An application of the characteristic initial-value problem to cosmology requires one 
to proceed along the following lines. 

(1) One needs a description of the intrinsic geometry of a general-relativistic light 
cone C-(P).  For a first discussion of the ‘nearby light cone’ and its interior (which 
already comprehends the whole observable metagalaxy) this description need only 
extend to the first singularity (caustic) on the past cone. 

(2) The type and number of required initial data for the space-time geometry, as 
well as the matter distribution, must be specified. 

(3) As a first step in solving the initial value problem, one should be able to 
determine both the local gravitational field and the motion of matter on C-(P).  This 
requires one to calculate the full space-time Riemann tensor as well as, e.g., the 
kinematical invariants expansion, shear and rotation of the matter congruence on the 
past light cone. 

(4) The relations between observable quantities and quantities describing the light 
cone structure as well as the matter distribution at the cone must be derived. However, 
in some cases the relations between observable cosmological quantities contain not 
only the inner geometry of the past light cone, but some other geometrical quantities 
which can be expressed in terms of the characteristic initial data. 

(5) These theoretical relations following from general relativity should be com- 
pared with the corresponding empirical ones in order to determine the intrinsic cone 
structure and matter distribution at the cone or, more realistically, to put limits on them. 

(6) One then has to determine both the gravitational field and the matter distribu- 
tion inside the past cone by using the data at the cone surface. Notice that this might 
not give a unique answer since the cone initial data are only partly known from 
observations. Furthermore, this step requires handling of the coordinate singularities 
which necessarily arise inside the past light cone. 

(7) A further task, among others, would be to determine from the geometry and 
matter distribution within the cone the frozen primordial concentraion of light elements 
such as hydrogen, helium and deuterium, including its possible space variation around 
the observer’s past world line. In general, this requires numerical calculation, as do 
some earlier steps. 

(8) A full treatment needs an extension of the initial value problem beyond the 
first caustic at the cone surface (this can still be done by means of local differential 
geometric methods) and a discussion of the global initial-value problem. In this article 
we begin the discussion by considering steps (1)-(3) (step (1) is discussed in § §  2-4, 
steps (2) and (3) in § §  6 and 7).  

To simplify the treatment, incoherent matter is assumed. This confines the dis- 
cussion to stages of the past history where the energy-stress tensor of radiation fields 
is negligible compared with other contributions to the right-hand side of the Einstein 
field equations. 

Thus, our approach covers space-time regions including the quasars (if at cosmo- 
logical distances) but excludes th 3 K microwave background radiation. To treat the 
latter, a characteristic initial-value problem including the equation of radiative transfer 
should be discussed. 

The treatment given so far in steps (1)-(3) can be considered as the first steps of 
an extension of the Kristian-Sachs (1966) approach from a neighbourhood of the 
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observer to a neighbourhood of the observer’s past light cone. We adopt general 
relativity (we could have taken any other metric theory of gravitation) to restrict the 
vast possibilities of a pure cosmographic treatment of cosmology. 

If this is done, a surprisingly small number of past cone initial data is needed. Part 
of the intrinsic cone geometry (its ‘conformal structure’, given by, e.g., the complex 
Penrose function C,,&”p”?’t“) as well as-for incoherent matter-the matter 
density and three velocity components (six functions altogether) must be specified on 
the past light cone, in order to determine a general cosmological model within its 
observationally accessible range. 

2. Observer based coordinates 

The cosmological coordinates used in this article are defined entirely in terms of an 
observer at the world point P and his past light cone (figure 1). Let the equation of 
the past cone be given by u ( x ” )  = 0 in any coordinate system x ”  with the tangential 
vector p, ,  =U,” being a null vector. The geodesics forming the past cone may be 
described by x”  =x”(u,  w A ) ,  where w A ,  A = 2, 3 are two ‘transversal’ parameters 
which are constant along a geodesic. They may serve to number the geodesics 
constituting the past cone. U is assumed to be an affine parameter. p ”  = dxw/du satisfies 

(2.1) 
besides p ” p ,  = 0. The affine parameter U is defined up to a change U ’  = au + 6, where 
a, b possibly depend on w A .  Under this change p ” + p ” ’ / a .  The observer’s four- 
velocity V” at P determines uniquely a preferred affine parameter U ’  along the past 
cone light rays by requiring the conditions VWp,  = -1/J2 and U ’  = 0 at the vertex P. 

dp”/du + Tr,,ppp“ = 0 

\ 

constant > O  

\ i 
Figure 1. Schematic drawing of a general-relativistic light cone with vertex at P. 
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(In the following, primes will be omitted since we deal exclusively with preferred 
affine parameters.) The equation U = constant represents regular closed two- 
dimensional spacelike surfaces on the past cone, One of their light normals is the 
tangential vector pcI,  the other (say q @ )  points out of the past cone and defines-if 
extended geodetically-a set U = constant of cone-shaped null hypersurfaces. Each 
member of this set is said to be conjugate to the past cone. The set includes for, say, 
U = 0 the future light cone of the observer at P. Since the observer's velocity defines 
also a preferred affine parameter, say U ,  on the future light cone, a similar set of 
conjugate null hypersurfaces U = constant emanating from the two-dimensional sur- 
faces U = constant on the future cone can be constructed, including the past cone for 
U = 0. Both sets of null hypersurfaces intersect each other in two-dimensional closed 
space-like surfaces, specified by given values of U and U. Two transversal coordinates 
wA, A = 2, 3, are defined as being constant along all generators (light rays) of the null 
hypersurfaces U = constant and zlso cocstant along the rays of the past cone emanating 
from P. However, we may not use these parameters to number the light rays on the 
cone-like hypersurfaces U = constant intersecting the past cone, since the w A  will 
change, in general, along these rays. 

Geometrical constructions of this type define a null coordinate system. In terms 
of an arbitrary coordinate system x+ ,  null coordinates are determined by the following 
differential equations and initial conditions. Everywhere 

(2.2a,b,c) 

u,,u,,gp' = -1; (2.3) 

w,,u,,gpu = 0 

w ' p  = 0, u,,v' = -1/J2, u,,v' = -1/J2.  (2.5) 

A u,pu,ugpu = 0 ,  u,,u,,gpu = 0, w .pu,ugpu = 0; 

on the past and future cones U = U = 0:  

on the past cone U = 0: 

(2.4) 
A 

and at the vertex P: 

We have chosen the null coordinates U and U so that they are positive within the past 
light cone (cf figure 1). Both U and U increase into the past with U = O  at the vertex 
and U = 0 on the past light cone. This convention is convenient for the past light cone 
initial-value problem. The signs and numerical values in (2.5) follow from V@ being 
a time-like unit vector directed into the future. A discussion of the Cauchy problem 
for the system (2.2)-(2.5) shows that U, U and x A  are in fact uniquely fixed apart from 
a transformation of the type w A ' =  wA'(wA).  Written in terms of null coordinates the 
metric is given by 

d s 2 = m 2 d u 2 + 2 h  du d u + 2 k A d w A d u + g ~ ~  dwAdwB. (2.6) 

The null coordinates are numbered according to 

(2.7) 
0 1 A A  x = u ,  x = u ,  x = w .  

The covariant and contravariant components are related through 

goo = 0, go' = l / h ,  gOA = 0,  g" = 0 
AC 2 AB (2.8) 

g = -g  ABkB/h, g g e c = G  m = k ~ k &  . 
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The signature is chosen as (+  + + -), so gAB represents a positive-definite metric. 
The conditions (2.3)-(2.5), furthermore, require 

k A = O  at U = 0 (past cone), 

(2.9) h =-1 

v'= v0= -1jJ2 at P. 

at U = 0 and U = 0 (past and future cone), 

For the Riemann and Ricci tensors in the null coordinate system see the appendix 
and $ 6 .  

We note some properties of the coordinates U ,  U, w A .  In general U' and U do not 
represent affine parameters along the relevant rays, with the exception of the para- 
meters along the rays on the past and future light cone of P. This is seen from the 
equation for the null geodesics, which has its standard form (1) only on the (full) light 
cone through P. (One easily verifies that (1) is automatically satisfied on the past cone, 
if the coordinate system U, U, w A is introduced. The same is true for the corresponding 
equation for the future cone generators,) Also, as noted above, neither will w A  be 
constant along the rays of both sets of null hypersurfaces U = constant and U =constant. 
The description of the space-time metric in terms of the coordinates U ,  U and w A  is 
free of coordinate singularities only in domains without intersection of light rays. 
Caustics consisting of points where light rays with infinitesimally differing transversal 
parameters w A  intersect will inevitably occur, however. Note first, that the point P 
is itself a degenerate focal point (vertex). Secondly, the rays on the hypersurfaces 
U = constant < O  (figure 1) intersect each other along two-dimensional caustics, forming 
a time-like cone-shaped hypersurface with the vertex at P that opens into the future. 

A similar time-like cone opens into the past and consists of the set of focal 
two-surfaces of the null hypersurfaces U = constant < 0. Thirdly, as is well known, the 
past light cone from P will also exhibit caustics in the past if the matter density does 
not decrease too fast along a null geodesic. 

For the particular case of the Robertson-Walker models these caustics collapse 
into a second singular vertex of the past cone from P, the vertex being singular in 
this particular case since it coincides with cosmological singularity. If space-time is 
flat, all null hypersurfaces constructed so far turn out to be cones, the time-like singular 
cones collapse onto a straight time-like line and there are no caustics on the past light 
cone of P. Although more complicated, the additional singularities present in a curved 
space-time endowed with null coordinates have essentially the same nature as the 
singularities arising from the use of spherical or cylindrical coordinates at the centre 
or on the axis. We denote that part of the past light cone through P which extends 
to the first caustic by C-(P) or C-. Similarly C'(P) or C' denotes the corresponding 
part of the future cone. The interior of the past light cone which can be reached by 
past directed null geodesics starting from C-(P)  will be denoted by D-(P)  (and 
similarly D'(P) for the inner domain of the future cone). 

The coordinate system employed here is almost completely determined by the 
observer. The only freedom still left is a change w A  + w A ' ( w A )  of the transversal 
parameters w A  for the past cone, that is an arbitrary change of the two coordinates 
which the observer uses to describe positions on his sky. We shall assume the observer 
to be a privileged or ideal observer, that is we suppose that there is neither relative 
motion nor acceleration of the observer relative to the mean motion of cosmic matter 
in his surroundings. Effects of this kind, for instance the solar system motion in the 
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galaxy, or the motion of the local group within the Virgo supercluster are easily 
accounted for. But even for an ‘ideal’ observer, the coordinate system reflects the 
particular position of the observer in the world and not necessarily the geometrical 
structure of space-time. On the other hand, for the interpretation of cosmological 
observations without a priori assumptions for the large-scale geometry, this coordinate 
system is most convenient. 

Of course, we could have introduced some other type of null coordinate system, 
for example a coordinate system based on the past light cones U * = constant with 
vertices on the observer’s world line L.  A space-time point Q may be described here 
by the proper time T (U* = T at L )  of the observer, by an affine parameter U *  on the 
cones U *  = constant and by the sky direction of the rays in the observer’s rest frame. 
This system avoids the time-like cones of focal points, but it is not directly accessible 
to the observer. Ellis (1980), in an approach to cosmology very similar to that given 
here, has used this coordinate system, with the line element written in the form 
d s 2 = a  dw2+2b dw d y + 2 u A d x A + h A B  dxA dxB (y asanaffineparameteronthepast 
light cone and w = 7 ) .  He noted that a, b and uA are not directly measurable by past 
light cone observations of the observer at P. Notice that the metric components are 
still subject to coordinate gauges. The values of the quantities a ,  b, uA on the past 
light cone are spurious indeed, as may be seen by a consideration similar to that given 
in this section. 

3. The gravitational field around the vertex 

At the vertex P the null coordinate system xcI = (U, U, w A )  becomes singular. The 
behaviour of the metric g,, near P is derived from the relations 

g,, = (a~”/axw)(axP/ax “)gap, (3.1) 
where f a  is a regular coordinate system at P. The functions X “ ( X ” )  exist even at 
the vertex, but not the inverse functions xcI =x”(X“) .  For simplicity, we choose, as 
did Kristian and Sachs (1966), a Riemannian normal coordinate system i“ at P. 
Besides ggY = qww = diag(-1, 1, 1, 1) at P,  all geodesics from P have the equation 

d2X ’” dXP d f “  
ds2 - O  ds ds 

or r;&“)- - = 0 -- (3.2) 

(s  is the arc length or an affine parameter in the case of null geodesics). Near P the 
metric tensor is represented by the power series 

g,” = T,W +i(RILP”“ +R,u“p)XPfu, * . * , (3.3) 
where X p  is the coordinate distance to P, and the Riemann tensor is taken at P (the 
X p  are still subject to Lorentz transformations). 

Expanding the functions X u  into powers of U and U ,  and substituting this power 
series into (3.1), with E,,, from (3.3), a number of relations between the power series 
coefficients of grV and g,” are obtained. Some of them already follow from (3.2). One 
derives 

(3.4) 
(i  + k 3 4 )  for the connection between null and normal coordinates. Here p ”  and q’” 
(equal to the limiting values of p” = g p y u , y  and 4” = g@”u,,) span the null direction in 

X’” = q ’ u  + p u  + d ’ ” U U 2 + 6 ~ U 2 V  + O ( U ’ U k )  
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the vertex, and also c i ”  and 6” depend only on the transversal coordinates w A .  The 
components of g near P can then be represented as a power series in U and v (0(u4) 
stands for o(uiv ) with i + k = 4): k” ’ 

m =o(u 4 ), h = - ~ + ~ “ ” u u + o ( u ~ ) ,  
kA=UV 2 k A  112) +u*Uk~”+V 3 k A  103) + O ( U 4 ) .  ( 3 . 5 )  

gAB = (U )2gAB/2 + 0(u4) 
2 

The coefficients of the power series depend linearly on the Riemann tensor R,,,, in 
P, except for the first term in gAB, which can be given a standard form using a suitable 
transformation w A ’  = w A ’ ( w A )  (the Riemann tensor occurs in the neglected terms). 

Thus the components of the metric tensor in the null coordinate system have a 
definite limiting behaviour near the vertex. Apart from h, which tends to -1,  all other 
components of g,, (as well as the determinant lg,vI) vanish if P is approached. This 
is typical for a coordinate singularity caused by a missing one-to-one map of coordinates 
and world points (P is presented by U = U = 0 and arbitrary w A ) .  We note briefly that 
an expansion like (3.5) also allows one to study the coordinate singularities on the 
null hypersurfaces U = constant > 0 for small U > 0. The hypersurfaces U = constant 
do not in general represent cones. The vertex is replaced by caustic surfaces with 
equation determined from lgAB I = 0 ,  

4. Light cone geometry 

For the past directed null geodesics through P we have from (3.2) in the Riemannian 
coordinate system 

i’” = f Y ( w A ) u ,  (4.1) 

where the two parameters w A span all null directions at P. In fact, (4.1) is the equation 
of the light cone through P. The induced inner cone metric is given by ( w ’  = U, i = 1, 
2, 3) 

glk = ( a x ’ / a w ’ ) ( a i ” / a w k ) g , , .  (4.2) 
From (4.1), g,1= 0: g,k is degenerate with matrix rank two. The basic quantities for 
the inner cone geometry are, therefore, the transversal components gAB (A, B = 2, 3).  
gAB can be represented by a complex two-dimensional null vector tA with tAtA = 0,  
tAtT\ = 1 (indices are moved with gAB): 

(4.3) 
tA is fixed up to a rotation tA + tA exp(iq5). Rotation coefficients with respect to tA are 
introduced by 

gAB = fAfg f fT\fB. 

p = - r A i X ,  u=-f tA ,  7 = t A * t B ( t T \ , B  - f z , A )  (4.4) A * . *  

(the point denotes a / a u ) ,  and inversely, tA can be determined from the rotation 
coefficients by integrating 

(4.5) 
p may also be written as p = -gABgAB/4* In terms of p (ray divergence), U (ray shear) 
and T, differential invariants for the inner geometry may be written down, which could 

* *  
tA = -pfA fA.  
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be used as invariant descriptions of the cone geometry (see Dautcourt (1971) for their 
use as characteristic initial data on two intersecting null hypersurfaces). Notice that 
the Gaussian curvature, 

(4.6) A’ * K = -277* f f A 7 , A  f t T > A ,  

is, in general, no inner differential invariant. Other descriptions of the inner cone 
geometry are given as projections of the Weyl tensor and Ricci tensor into the cone: 

i R C l v p ” p w  = w ,  CClwpoP”pPtW*tU* = 9 (4.7) 

(t” is a four-dimensional complex vector orthogonal to plr. = u,,g”” which corresponds 
to the complex direction t A  in the cone). In terms of the rotation coefficient, 

(4.8) 
2 w = p - p  -re, 9 = 6 - 2pa. 

The behaviour of the cone geometry near the vertex U = 0 follows from expanding 
(4.2) in powers of U : 

3 (no terms -U ). 
The transversal coordinates w A  will be chosen to make the cone metric near the 

observer (essentially g A B )  as simple as possible. We want to identify w A  with the 

reference angles e and 4 at the observer’s sky. A general null direction p” at P (with 
components taken in the normal coordinate system) can be parametrised by 

2 

p ‘  = P O n ‘ ,  n = (cos 4 sin e, sin 4 sin 8, cos 0 1. (4.10) 

Then from (4.1) and (4.2) 

(4.11) 

The arbitrariness of po is connected with the allowed change U + U ’  = a  ( w A ) u  of the 
affine parameter, U ; for Do +Do’ = p o / a  does not change the inner metric. Let a Lorentz 
transformation of the normal coordinate system change io into the observer’s proper 
time. If v” is his velocity, we have vo = 1. The condition e”p, = - 1 /J2  or 
equivalently po = 1 /J2  fixes the gauge of U. An observer determines an affine para- 
meter on his light cone uniquely. The next expansion term u4 in (4.9) involves the 
local Riemann tensor at P: 

iu2gAB dw A dwB = u2(p0)2(d@2+sin2 8 dq5’). 
2 

A short calculation shows that 

where q0, w o  are the values for U + 0. tA, p and U behave as 

f A =  fAu (4.14) 

near the vertex. Subsequently, we use the subscript U in pv, u ~ ,  to denote the rotation 
coefficients of the past cone z1 = 0. 

. . . , p = -2.4-l +wou/3  + . . . , U = $ P O U / 3  + . . . 
1 
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5. Cone initial value problem for vacuum fields 

Now consider the initial value problem on the past light cone. A straightforward 
calculation gives the components of the Riemann tensor and Ricci tensor in null 
coordinates (partly printed in the appendix). 

We first consider vacuum fields, R,, = 0. For the calculation of the vacuum fields 
inside the past light cone U = 0 with data specified on the past light cone, not all ten 
field equations need to be solved inside the past cone. As in the case of the characteris- 
tic initial-value problem based on two intersecting null hypersurfaces (Sachs 1962, 
Dautcourt 1963, 1967), the four Bianchi identities 

GYP” = 0 (5.1) 

allow four field equations to be eliminated. The relevant lemma can be formulated 
as follows: 

Lemma 1. If the four vacuum field equations 

gABRA,q = 0, Roa = 0, Roo = 0 ( 5 . 2 )  

hold on C - ( P )  and if the remaining six equations 

(5.3) CD ROl = 0, RAE - $gABRcDg = 0, R i 1 = 0 ,  RlA=O 

are satisfied in D-(P) ,  then equations (5.2) are also satisfied in D-(P) .  

A simple proof runs as follows. As a consequence of (A16)-(A18) the Bianchi 
identities (5.1) may be written, if the equations (5.3) are taken into account, as 

Rbo =fo(Roo, ROB, (gABRAB)’ =fi(Roo, ROB, 

R ~ A  = ~ A ( R o o ,  R O B ,  RABgAB) (5.4) 

(the prime denotes a / a u ) .  The functions on the right-hand side depend linearly on 
the components Roo, ROB, RABgAB; they also involve the intrinsic (as to the cone 
U = 0) derivatives a / a u  and a / d w A .  It is seen from this structure of (5.4) that the 
exterior derivatives a / a v  of all orders applied to Roo, RABgAB, ROB vanish at C-(P) ,  
if these quantities vanish by themselves. Thus, in the analytic case, the relations (5.2) 
hold in a finite neighbourhood U 3 0 of C - ( P )  (care is necessary, since the coordinate 
system breaks down in a finite affine distance U *  from C-(P)) .  The derivatives a / a u  
on the left-hand side of (5.4) are to be interpreted as limits lim,++,)(df/du) =f(+”, 
involving only positive values of U (the interior of the past cone corresponds to U > 0 
in our convention). Thus the validity of (5 .2 )  is confined formally to the interior of 
the past cone. One might equally well interpret the U derivatives at C - ( P )  in (5 .2 )  
as limits from negative U :  lim ( d f / a v )  = f ’ - ” ,  and again conclude-in the case of 

vacuum-that the ‘U-minus derivatives’ of Roo, RABgAB, R O B  vanish to all orders also 
for U < 0, U > 0, if they vanish at U = 0, provided the remaining equations (5.3) are 
satisfied on C-(P) .  

As shown in § 6, there is a stringent difference between the cases, because in the 
latter case the initial data on the future cone C’(P) must also be given for a complete 
solution of the initial value problem (indeed, suitable initial data given on the full 
cone determine the gravitational field also in the relativistic presence of P, cf Penrose 
1963). The interior D’(P) of the future light cone cannot, however, be reached with 

U - - 0  
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the development (5.4). Here a complementary lemma holds, which is noted for 
completeness. 

L e m m a  2. If the four vacuum field equations 

R i 1 = 0 ,  g A B R A B  = 0,  RIA=^, ( 5 . 5 )  

Ro1= 0, RAB - i g A B R c D g  - 0, Roo = 0, ROA = 0, ( 5 . 6 )  

hold on the future cone C'(P),  and if the remaining equations 
CD - 

hold in D'(P), then ( 5 . 5 )  hold also in D'(P). 

Lemma 1 stated above separates the equations in the six propagation equations 
(5.3), which must be satisfied everywhere on the manifold, and in the four cone 
equations ('hypersurface equations') ( 5 . 2 ) ,  which need to be satisfied on the cone 
only. (5.3) has just the right number of equations to propagate the six unknown field 
functions h, kA, gAB into the past cone. The four cone equations ( 5 . 2 )  restrict six 
starting values of h, kA, gAB (or their derivatives), so essentially only two generic 
functions need to be given on the past cone in the vacuum case. The cone equations 
may be written in a simplified form, with the values for the metric tensor taken on 
the past cone: 

In ( 5 . 9 )  we have introduced the quantity 
1 A B  I 

pu =4g g A B  (5.10) 

which represents the divergence of the cone-like null hypersurfaces U = constant at 
their intersection with the past cone U = O .  (The different sign compared with pv in 
8 4 arises because U increases inside the past light cone, that is, in the direction of 
the apparent vertex of the cone-like hypersurfaces U = constant). The remaining 
equations (5.3) must be written out in full if the propagation problem is considered. 
Here we are interested in the gravitational field on the past cone. This allows us to 
introduce the simplifications (2 .9)  for all components of the Ricci tensor. The equations 
(5.3)-arranged in a certain order and partly combined with ( 5 . 2 )  to simplify the 
integration-then take the form (the Gaussian curvature of the two-dimensional 
surfaces U = constant on C- is denoted by K )  

1 CD 
R A B  = g k B  -pLgkB +PugAB - ? ( g a C g B D g  + g L C g A D g C D )  

- i ( k L l A  + k k , B ) - i k k k L  + K g A B ,  (5.11) 

( 5 . 1 2 )  

(5.13) 

(5.14) 

A B -  ' 1 A B  Roi + t R A B g  - h ' - 4 p u p L  + K  - 2 k L k L g A B  + Z g   AB, 

R i 1 = - 2 p : - 2 P , h ' + T g  g A B ,  I A B '  , 

R A l  = -+k;  - ikaH'++h , tA  +' B C + 1  r BC I zgAB1cg $ A B ~  k c - p u k a  - ~ P u , A .  
(Note ( 5 . 9 )  is contained in (5.11). For the propagation problem, R A B  - $ g A B R c D g  CD - - 

0 instead of RAB = 0 should be taken as propagation equation.) 
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6. Integration of the field equations down the cone 

The form of equations (5.7)-(5.14) suggests a definite integration scheme, which starts 
with (5.7). This equation (equivalent to the first equation in (4.7)) is the only restriction 
for the cone geometry imposed by the field equations. (5.7) may be used to determine 
g A B  completely, if two components of g A B  (say the ‘conformal’ metric g A B ,  that is g A B  

up to a factor) are given. For instance, if 

g A B  = $U ’ y A B  (6.1) 

is assumed with ~ Y A B /  =sin2 8, (5.7) gives an ordinary differential equation for the 
conformal factor f = f ( u ,  wA): 

f / f + 2 f / u f - f 2 / 2 f 2  = - ~ ~ ~ + $ j A ~ j ~ ~  (6.2) 

which can be solved, provided TAB is given. f remains finite (= 1) at the vertex U = 0. 
Other p6ssibilities are to give the shear crv or to specify the Penrose function Qo as 
function of U, 8 and 4. The disadvantage of all these data is their gauge dependence. 
The use of gauge-independent differential invariants of the null geometry as initial 
data was discussed by Dautcourt (1971). The data proposed there show singularities 
on otherwise completely regular submanifolds of the cone. Thus the problem of giving 
two suitable functions of the intrinsic corle geometry remains open. With known g A B ,  

equation (5.8) can be solved for the k i  : 

(6.3) 

At the lower boundary U = O  the integral (6.3) becomes formally singular, since 
J g  - U *  sin 812 for small U. To guarantee that k i  - U *  for small U, as follows from 
(3.5), the bracket in (6.3) should vanish like U for U + O .  This is indeed true: a 
non-singular tensor like the matter tensor replacing R has components R O A  which 
vanish at least like U in the null coordinate system; also the rest of the integrand 
vanishes like U as can be checked by direct calculation. 

Singular integrals of the type (6.3) often occur in our treatment due to the vertex 
singularity, but turn out to be finite (one could use ‘renormalised’ quantities like 
g A B / u 2  or more generally, g A B / ( U  -U)’, to make the regular behaviour more trans- 
parent). From (5.9) we calculate the divergence of the null hypersurfaces U = constant 
at their intersection with the past cone U = 0: 

(6.4) 

Since R A B  as well as k a  vanish like u 2  for small U, the last three terms of the bracket 
in (6.4) remain constant for U --f 0. They contribute to p, a term which vanishes for 
U + 0. The first term involving the Gaussian curvature K = 2 / u 2  produces the expected 
behaviour p, = - l / u  near the vertex. 

The remaining content of (5.11) may be represented as a simple linear differential 
equation for the shear cr, of the null hypersurfaces U = constant: 

p u = -  J g d u  ( - 2 K + k i i B g A B + ~ k X k ~ g A B + R A B g  AB ). 
4Jg s 0 

(6.5) 
1 A* B* c+,, --pvcru = -pugv -5t  t ( R A B  + kale + i k ; k b ) .  
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As usual, the right-hand side of (6.5) is known from previous integrations. uu follows 
as 

The integrand in (6.6) is proportional to u near the vertex, thus uu - U  for small U. 
Equation ( 5 . 1 2 )  determines h'  from its value lim h'+O for u + O  ( h '  - U  near the 
vertex) 

(6.7) 

In order to guarantee that h' tends to zero for u + 0, the integrand must reach a finite 
value for u + 0. 

Indeed, the divergences l / u 2  which are present in the last three terms of (6.7) 
cancel. The last equations ( 5 . 1 3 )  and ( 5 . 1 4 )  determine the second derivatives p :  and 
k: algebraically in terms of known quantities: 

1 A B ' .  h ' =  du ( R o 1 f $ R A B g A B  + ~ k a k ~ g A B - K + 4 p u p c - 4 g  gAB).  5," 

k: = - 2 R 1 ~  - k L ( 2 p u  + h ' ) +  k & g a s g B C  -+,,A +  hi^ f g h B l c g B C .  (6.9) 

The still missing second-order derivatives of the metric tensor are h" and ck * h" is 
obtained from (Rol  f z g  )'. The calculation 
proceeds as in the previous cases. By means of these formulae, all second derivatives 
of the metric tensor are known on the past light cone. The Riemann tensor (and its 
invariants) can, therefore, be constructed on C - ( P )  (cf equations (A3!-(A12)) and 
the local gravitational field on C -  is known. 

This integration scheme extends to all derivatives of the Riemann tensor. Taking 
the U derivatives of R A E  -igA&CDgCD, Rol l  R l l  and RIA, one is able to determine 
higher-order derivatives of h, k A  and gAB at U = 0,  and so to Construct an analytic 
solution g,, as a power series in U. The complexity of the resulting equations rapidly 
increases, thus one should either consult a formula manipulation system or turn to a 
null tetrad formalism, which allows a more transparent derivation on the cost of 
increasing the number of variables. In any case, the whole procedure has to be turned 
into a computer program to solve the past light cone initial-value problem numerically. 
It was stated in 5 5 that the gravitational field in the 'relativistic presence' u > 0, v < 0 
cannot be calculated from initial data on the past cone C'(P) .  We may explain this 
qualitatively from the structure of the U -derived propagation equations (5 .3 ) ,  which 
represent ordinary differential equations in the independent variable u for the higher- 
order U derivatives of h, kA and gAB at U = 0 as dependent variables. Remember that 
L, derivatives of any function f on the past cone U = 0 are usually to be taken as 

af/au = f (+ ) ' .  Solving these equations by integrating down the light cone 
requires specification of initial data for U + 0. Now for. u + 0, v derivatives f(+" turn 
into u derivatives f'" along the opposite direction of the observer's sky (8 + 7~ - 8, # + 
4 f ~ ) .  Thus the initial values are known from previously calculated quantities on 
the past cone. If the gravitational field for U > 0, U < 0 is considered, any higher-order 
U derivative must be interpreted as f '-" = limL+-O af/dv.  Their initial values for U + 0 
are U derivatives taken on the future light cone U = 0. Thus data on the future light 
cone need to be known. The discussion shows that the same type of initial data must 
be given as on the past cone. 

1 A B  1 CD 
R A B ) '  and a: from ( R A B  - I g A B R C D g  
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7. Extension to incoherent matter 

The integration procedure described in Q 6 is easily generalised to the case where 
matter is present. For simplicity, incoherent matter 

T p u  = clvpvu (7.1) 

is assumed. Lemma 1 (allowing a reduction of the number of field equations which 
must be solved) now reads as follows. 

Provided the four equations 

(7.2) 2 - 2Xp vo vi = 0,  ROA - Vo VA = 0, R 0 o - x ~  Vo = 0 

are satisfied on C-(P),  and the six equations 

Rol - ~p Vo Vi + &p = 0 ,  

RAE -tgA€8CDgCD-Xp[VAVB +gAB(;- vOvl)]=o, 
2 R11-xpV1 = O ,  R 1 A - X/.L Vi VA = 0 ,  

as well as the four divergence relations TYg = 0 or 

(7.3) 

VYmVU = 0, (7.4) 

cL,pvp/cL + VYP = 0 ,  (7.5) 
are satisfied on D-(P) ,  then (7.2) hold also on D-(P).  To (7.4) and (7.5), the relation 
V"V, = -1, or 

-2VOv1-t vAVBgAB=-l (7.6) 
on C-(P) ,  must be added. The proof in Q 5 extends to the present case. The 
construction of solutions starting from the past light cone initial data proceeds as in 
Q 6 (the components R,, must be replaced by the corresponding matter quantities 
instead of putting R,, = 0). 

The relations TYZ = 0 do not restrict the initial values of the matter density p and 
velocity components Vp on C-(P).  Instead, (7.3) and (7.4) allow us to express the 
exterior derivatives p ' ,  V', or Vb, VL in terms of the metric components on v = 
constant. 

Calculated on C-(P) ,  we have: 

vb = vO,AvA/ VO- v 0  VI/ vO-gABVAVB/(2 VO), (7.7) 

(7.8) 

(7.9) 

CL'= (*e +&AVA)/VO+CiV1, (7.10) 

vi = V1.A v^/ VO - VI/ VO - Vlh ' + v1 vAkL/ VO-gLB VA VB/(2 VO), 
B C  vk =(VA,BVB-vAV1-gBC,AV v /2)/VO, 

with the expansion velocity 

+ kLVA - 2p,Vo + 2P"Vl. (7.11) 

(Because V*V, = -1, (7.7)-(7.9) are not independent.) The integration scheme 
discussed in the previous sections shows that-apart from quantities describing the 
matter tensor-only two geometrical quantities on the past light cone C ( P )  must be 
given to determine a local world model. A possible candidate is the complex Penrose 
function 9. Additionally we must specify (in the case of incoherent matter) the matter 

@=-Vb-vl+VA\Bg AB 
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density p (U, 8,4)  and three velocity components-say Vo(u, 8,4) and VA(u, 8, 4)-on 
C-(P).  Up to a factor 1 / J2 ,  Vo is equal to the redshift 1 + z  of light emitted at the 
world point (U, = 0, 8,+) from matter moving there with the velocity V,. Va can 
be considered as the proper motion components of this matter. The six real functions 
in 9, p,  Vo and VA cannot be specified as completely arbitrary functions of U, 8, 4 
on C-(P).  The vertex singularity (as well as the various caustics) impose additional 
conditions. Near the vertex U = 0, p tends to an arbitrary finite value, Vo to 1 / J2 ,  
and VA vanishes at least as U for u + 0. The velocity components are given here in 
the observer’s null coordinate system. A characterisation of the fluid motion indepen- 
dently of the observer is provided by the kinematical invariants expansion velocity 8 
(given in (7.1 l)), shearing velocity (ZFV = Z V W )  and rotation velocity (OgV = -aV,), 
obtained from the algebraic decomposition of V, : 

(7.12) 

In our case of vanishing pressure the last term vanishes. To characterise the type of 
motion on the past light cone, the scalars Z = (Z,Jp”/2)”2 and R = (0,vO@Ly/2)1’2 
besides 8 should be used, calculated in the null coordinate system. They contain first 
exterior derivatives of the metric tensor components which are already calculated in 
(6.3)-(6.7). Thus the kinematical invariants on the past light cone can be expressed 
in terms of characteristic initial data. 

vFiV = e(g,, + v,vv) /3  +E,.,“ +R,, - v,;,vVvp. 

8. Simple examples 

We consider first the static Einstein universe with line element 

ds = -d72+dX2+sin2X(sin2 8 d+’+dO2). (8.1) 

The transformation T = -(U + v ) / J 2 ,  x = (2: - u ) / J 2  introduces null coordinates: 

ds2 = -2du dv +sin2([u - ~ ] / J 2 ) ( d @ ~ + s i n ~  8 d4’). (8.2) 
The geometry of this space-time is extremely simple. The past light cone 2: = O  has 
the divergence pv = -cot(u/J2) /J2,  shear ut = 0 and Gaussian curvature K = 
l /sin2(u/J2) of the wave surfaces u = constant. For U = J277 the rays meet again in 
a second non-singular vertex. C - ( P )  covers the whole past light cone. We may consider 
an initial-value problem on C ( P )  starting with the data 

= 0, v0 = 1 / J 2 ,  VA = 0, @ =constant, (8.3) 
on t’ = 0. We would have to extend the treatment given so far, since a pressure 
p = 2 / x  - CL = constant and a constant lambda .1= 1 + x p  must be assumed for this 
model. It suffices to replace R,, in i6.2IH6.9) and other relations by 

R,, =xV,V,(p + p ) + g , , ( ~ ~ + & [ p  --PI). (8.4) 
9 = 0 on U = 0 requires uL = 0: From (4.7) a solution ut = a/  Jg, U = 0, would be 
admitted, but crL diverges for U += 0 contrary to (4.13). So a = 0, and the first equation 
(4.7) can be integrated with w = and u, = 0. The result is pL = - i 1/./2)cotiu/d’2). The 
metric on the cone follows as ds2 = sin2(u/J2)(de2+sin2 8d42)  by integrating (4.5) 
and using (4.3). The further integrations can be carried out step by step, yielding 
pu = -co t (u /J2) / J2  from (6.4), uu = 0 from (6.6), h’=O from (6.7), p h -  
1/(2 sin2(u/J2)) from (6.8) and k 2  = 0 from (6.9). We stop here since the propagation 
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problem is not treated in this article. The method may not be very useful to obtain 
analytic solutions of the field equations. Its value is the unique characterisation of a 
cosmological model by few data such as (8.3), data which are closely related to 
observations (for instance, no redshift will be seen from galaxies at rest in the cosmic 
matter). 

As a second example we use the Friedman models. A transformation from the 
coordinates t, x, e, q5 employed in the Friedman metric 

ds’ = -dt’+R2(f)(d,y’+S2Cy) d n 2 ) ,  (8.5) 

with 
ro sin(x/ro), I; ro sinh(x/rd, 

dfl’ = sin’ 8 d4’ + de2, 

S ( x ) =  x, for k = 1, 0, -1 respectively 

and ro = [ (2q0 - l ) ~ p ~ / ( 6 q ~ k ) ] - ~ ”  (po and qo are the present matter density and present 
deceleration parameter) to null coordinates U, U, 8, q5 can be carried out using the 
following transformation. First change t to T by 

‘ dt 
= I,, Kj 

( T < O  in the past) and denote R ( t ( r ) ) = a ( ~ ) .  For the present time T = O  we may 
assume a (0) = 1. Notice that the coordinates x, T carry a length dimension whereas 
R or a does not. Null coordinates u’, v’ may again be introduced by 

U’ = -(x + T ) / 4 2 ,  U’ = (x - 4 4 2 ,  
resulting in 

ds’ = -2L du’ dv’ + LS’ do’ 
with 

L=  a2(-[u’ +C] /J2 , ,  s = S([u’ - v’]/J2). 

(8.6) 

However, C and U’ are not yet affine parameters on the light cones C = 0 and u’ = 0. 
To obtain the (uniquely determined) particular type of null coordinates employed in 
this article, define a function 

and its inverse 5 = [(p). Then the coordinate transformation 

transforms (8.6) into 

ds2=-2hdudu+IdC12 
with 

18.8) 

[(U, U )  = a 2 ( - 5 [ U / J 2 ] - 5 [ U / J 2 1 ) S 2 ~ 5 [ u / J 2 ] - ~ [ v / J 2 ] ) .  (8.10) 

Since [(O) = 0, h + -1 on the future cone U = 0 as well as on the past cone U = 0. We 
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are interested in obtaining the characteristic initial data on the past light cone U = 0. 
Since g A B  is conformal to the sphere metric with conformal factor independent of 
the transversal coordinates 8 and 4, we have vanishing U, as well as qu = 0 on C-(P).  
The velocity components V ”  in null c oordinates are obtained transforming V ”  = 6,” 
from the original coordinate system ( 8 . 5 ) .  For the matter density, pR3=pd?:  is 
used. A straightforward calculation shows that a Friedman universe is uniquely 
characterised by the past light cone initial data 

vu =0 ,  vo = Z ( U ) / J 2 ,  VA = 0 ,  /l = / l O z 3 ( u ) .  (8.11) 

Z ( U )  is the redshift function 1 + z ( u )  depending on the affine parameter U. Explicitly 
we may express Z ( u )  in terms of a function f ( x )  (for k # 0): 

f ( x )  is defined by its inverse function x ( y ) :  

Sincef(x(y)) = y by definition, it is seen that Z(0)  = 1, if we put x o  = x[2qok/ (2qo-  111. 
A particular Friedman model is characterised by its familiar parameters k o  (present 
matter density), qo and Ho = [ ~ + ~ / ( 6 q , ) ] ’ / ~ .  Note that the redshift z increases 
monotonically with U until it reaches infinity for a value uCa of the affine parameter, 
given by 

uc0 = x o ( 6 / ~ ~ o ) ” 2 [ 2 q o k / ( 2 q o -  l)]”* for k f 0, 

for k = 0. 
(8.14) 

It is in general not easy to determine the characteristic initial data for a given more 
complicated cosmological model (equivalent to, and to some degree identical to the 
determinination of its observational content), because in general one needs to integrate 
the null geodesics. 

On the other hand, one is free to generalise the initial (8.11) for the Friedman 
universe by, say, introducing proper motion or a shear (T, # 0, without getting con- 
sistency problems. However, properties of homogeneity and universal isotropy may 
be destroyed by this procedure. It is trivial to formulate the initial data as being 
isotropic for the Earth observer, but any other sufficiently distant observer comoving 
with dust matter (‘privileged’ observer) will in general find no isotropy (this can be 
checked for observers on or inside the Earth observer’s past light cone. But one 
expects this violation of a Copernican principle also for any other privileged observer, 
no mattter how the missing data on the future cone are chosen). To express 
homogeneity (existence of three-parameter groups of motions acting transitively on 
space-like hypersurfaces at least in the space-time region D-(P))  in terms of the cone 
initial data is a problem still to be solved like the corresponding problem for universal 
isotropy. In both cases one expects that the initial data are fairly strongly restricted 

1 / 2  U =  = ( 2 4 / 2 5 ~ ~ 0 )  
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by Copernican principles. On the other hand, it is easy to formulate conditions for 
‘local homogeneity’ (homogeneity near the past light cone) as restrictions for the initial 
data. One could check with the help of the propagation equations if homogeneity is 
also present inside the past light cone. Eventually, this is all that one can do if one 
wants to stick exclusively to observations. 

9. Trapped surfaces 

Because of its importance for the singularity theorems (Hawking and Ellis 1973) we 
conclude with some remarks on trapped surfaces on the past light cone (cf Hawking 
and Ellis 1968). Near the vertex P, the divergence pu of the past cone diverges as 
- l / u  for U + O .  If, for example, sufficient matter is present down the rays of the past 
cone, po increases and may become positive after going through a ‘turning point’ pt: = 0 
at u = u2,  say. Its geometrical meaning is seen by considering the surface area 
A = J g  de  d 4  of the two-dimensional surfaces U = constant, U = 0. We have 

thus the area A stops increasing with U and shrinks after passing a turning point 
U = U *. Since u2 contrary to U * depends in general on the angles 8 and 4, U * need 
not coincide with u 2 .  (For a Minkowski light cone, u 2 =  u * + a . )  Apparent images 
of galaxies and quasars on the sky, after shrinking with U for small U, expand for 
U > u2  (but still with decreasing surface luminosity). Before the point u2  with pt = 0 
is reached, one meets another special point at U I  S u2, where p c  --uou; becomes zero. 
Elliptical points on the cone (present for U < u l )  change into hyperbolic points (for 
u >Ul).+ 

Now consider the two surfaces U =constant, U =constant on the cone-like null 
hypersurfaces u =constant intersecting with the past cone. The divergence pu is a 
measure of how rapidly the hypersurfaces U =constant converge into the past at its 
intersection with the past cone. 

Near the vertex pu = - l / u ,  and pupl  = l / u 2 > 0 .  Provided pu does not change its 
sign down the cone, pupL becomes negative for u > u2(B, q5 1. If this holds on the whole 
closed two-surface Z2 (with equation u = u 2 ( @  d)), X 2  is called a trapped surface. 
Both past directed sets of light rays orthogonal to Z2 converge for U > u 2  respectively 
v > 0 (remember that u and U both increase towards the past). The picture changes, 
if pu also changes its sign at U = u3(8, 4 ) .  If u3 < u 2 ,  the surface U = u 3  on C- is a 
trapped surface with regard to future directed rays. For u3 > u 2  the surfaces u = constant 
could be trapped with regard to both future and past directed rays. From (6.4) it is 
not clear if pu increases in all cases for increasing U. More stringent conclusions can 
be derived with the concept of an average trapped surface (Hartle and Wilkins 1973). 
This is a compact space-like two-surface with orthogonal light rays which generate 
wavefronts (space-like two-surfaces) of decreasing area for both outward and inward 
directed rays. Consider the change aA/dv = A ’  of the surface area A of Z on the past 
cone as a function of U. A’ < 0 holds near the vertex as well as A > 0, while AA’ > 0 is 
required for an averaged trapped surface. For the change of A’ with U one derives 

2 

f The two types of points show a different behaviour of the change of distances to the next light rays, cf 
Dautcourt (1967). 
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from (6.4) 

A’= - I K J g  d e  dq5 +; d e  dq5 Jg(kLgAB)lB I 
++ dB dq5 J g ( R A B g A B  +ikLkLgAB) .  (9.2) 

J 

The surface integral over the Gaussian curvature gives 4 7  according to the Gauss- 
Bonnet theorem. The second integrand in (9.2) vanishes, because the integrand 
represents a divergence and k ;  is regular on the surface. Hence 

I A’= -417 ++ dB dq5 J g ( R A B g A B  + tkLkbgAB)  

or 

A ’ =  - 4 7 ~ ~  +i[oudu I de  dq5 Jg(RABgAB+$kkkLgAB)  (9.3) 

after integrating down the cone. Since the integrand is always positive, the integral 
term in (9.3) could eventually compensate the negative first term for a sufficiently 
large U. It depends on the specific characteristic initial data, however, whether A’ or 
A changes sign, if at all. 

We briefly consider two simple cosmological models with regard to trapped sur- 
faces. For the static Einstein universe one derives from (8.2) along the past light cone 
u = o  

(9.4) 

thus AA’ < 0 everywhere on the past cone, apart from the two-surface U = U * = 17/ J 2 ,  
where both A and A’ (and already pu and p , )  change sign and become zero instan- 
taneously. After this turning point the inside of the past light cone from P becomes 
the outside of the future cone from the antipodal vertex p ( p  is reached when all 
past directed null geodesics through P meet again). Therefore, the two-surfaces 
U = constant > U *  may be considered as trapped with regard to both future and past 
directed rays. The situation is different for the Friedman models. Because of the 
isotropy of the models, here also the average trapped surfaces coincide with a closed 
trapped surface U = constant on the past cone determined by a changing sign of pup“ 
along a ray. For simplicity, the Einstein-deSitter model is taken. With the function 
f ( u )  = (1 - u / u ~ ) - ” ~ ,  pu and po can be represented as 

A = - A ’ =  ( 4 ~ / J 2 )  sin(J2u);  

(9.5) 

f ranges from 1 (at the observer) to 0 (at the past singularity). It is seen that pu cannot 
become positive within this range off. However pv does so for f s 3 or U t  2 0.868 um. 
ut corresponds to the redshift z = f - 2 -  1 = 1.25, where the apparent area of distant 
sources stops decreasing if one goes back into the past. For U a u t ,  all two-surfaces 
U = constant are trapped surfaces. These are trivial examples, but they show different 
behaviour. It would be interesting to know and to understand the behaviour in more 
general situations, in particular the influence of rotation and shear motions. Remark- 
ably, the distribution and motion of matter on the past light cone alone suffices to 
solve this essentially nonlinear problem. 
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Appendix 

The Riemann tensor in null coordinates 

We collect in the appendix a number of formulae connected with the double null 
coordinates system x W  = (U, U, w A )  introduced in 5 2. They have been checked using 
REDUCE (Hearn 1972). 

The components of the Riemann tensor and Ricci tensor are defined as in Misner et 
a1 (1973).  Since the formulae for an arbitrary space-time point are too long to be 
reproduced here, we give the values on the past light cone (with the simplifictions 
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A vertical stroke ( 1 ) subscript denotes the two-dimensional covariant derivative with 
respect to the metric gAB, the comma the ordinary derivative. The point denotes the 
derivative (a/au), the vertical stroke superscript is the derivative ( a / a u ) .  Index displace- 
ments are carried out with the help of gAB and g A B .  is  the Riemann tensor 
corresponding to gAB. Since this metric is two dimensional, we have - 

RABCD = K ( g A C g B D  - gADgBC 1,  AB = Kgas, ('413) 

The relation between the Rieman tensor and Ricci tensor takes the explicit form 

(A14a) 

(A14b) 

(A14c 1 

with the Gaussian curvature K. 

AB Roo = - 2 ( k A / h  )Roi~o-Ro~oBg , 

ROA = (l/h)RoioA + RBoAcgBC - R  ~ O A B  ( k B / h )  -RsoAi(kB/h ), 

RAB = ( l / h  ) R I A B O -  Ckc/h )RiABc +RACE& CD + ( l / h  ) R I B A ~ -  ( k  C / h  )RiBAc, 
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